机器学习实务(2021夏季班)
教师: 周信宏
2021/06/01~2021/07/20

概要

【本次课程搭配教育部智能创新跨域人才培育联盟计划,由成功大学主导之Coding-X课程】相关消息详见网址

本课程内容包含:人工智能技术演进、深度学习多层神经网络(DNN)和卷积神经网络(CNN)的模型原理,以及相关套件(Tensorflow, Keras)的实作方法。通过数据可视化呈现、数据前处理和常用机器学习(MLP, Random Forest, Logistic Regression, SVM等)的原理和实作方法,使同学具备影像和数据数据的模型训练、分类、预测和评估的技术。

课程目标

本課程目標在培養同學具備深度學習和數據分析實作能力,以滿足產業AI人才技能的需求。

授课教师

  • 教師姓名:周信宏
  • 教師簡介

【現職】國立暨南國際大學資訊工程系(原任職長榮大學資訊暨設計學院)

【學歷】國立臺灣大學資訊工程學系博士

【經歷】

  • 暨南國際大學資訊工程系/副教授
  • 長榮大學資訊暨設計學院人工智慧研究中心/主任
  • 長榮大學資訊管理學系/助理教授/系主任
  • 台灣電腦對局學會(TCGA)/理事
  • 財團法人資訊工業策進會-雲端服務暨巨量資料產業發展計畫/AI與數據應用領域專家顧問
  • 智慧城鄉生活應用發展計畫-人工智慧應用(AI)融合大影像與多來源資料之智慧診斷服務計畫/技術顧問

【專業】圖形演算法、電腦對局、人工智慧、深度學習、數據分析、生物資訊

课程进度表

第1周:人工智能的进展/什么是机器学习?

第2周:类神经网络/MLP案例实作

第3周:卷积式神经网络/CNN影像辨识案例实作

第4周:数据处理工具介绍/MLP数据分析案例实作

第5周:监督式学习/机器学习工具

第6周:监督式学习实作(I)/监督式学习实作(II)

第7周:非监督式学习

课程内容

一、人工智能的进展
二、什么是机器学习?
三、类神经网络
四、MLP案例实作
五、卷积式神经网络
六、CNN影像辨识案例实作
七、数据处理工具介绍
八、MLP数据分析案例实作
九、监督式学习
十、机器学习工具
十一、监督式学习实作(I)
十二、监督式学习实作(II)
十三、非监督式学习

上课形式

本課程分為13個主要單元,每個單元依據學習份量,有數段10-15分鐘左右的視頻影片。每個單元內容提供隨堂測驗及議題討論,以幫助學習者快速確認是否瞭解上課內容;每週另有主題作業用以考核學習成果。

评分标准

  • 課程及格標準:  60   滿分: 100 
  • 隨堂測驗(100%):針對回答的正確性進行評分。 

通过标准


Course grade pass:60Grade Memo:max grade 100 point

先修科目或先备能力

學員必須具備Python程式語言的能力。

建议参考书目

  • Python機器學習(第二版),Sebastian Raschka, Vahid Mirjalili原著,  劉立民、吳建華編譯,博碩出版社,出版日期:2018/08/30。
  • 機器學習-工作現場的評估、導入與實作,有賀康顕、中山心太、西林孝原著,許郁文翻譯,歐萊禮出版社,出版日期:2018/09/06。
  • 機器學習:特徵工程,Alice Zheng, Amanda Casari原著,歐萊禮出版社,出版日期:2020/04/30。
  • 其它

    本課程修課通過證明費用:250元
    如何申請及下載證書?